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Abstract

The natural vibrations of rectangular membranes with partial intermediate supports are solved by a direct variational

method known as whole element method (WEM). It is based on the use of extended trigonometrical series of uniform

convergence. Fortunately, for the case of membranes supported on the perimeter, which is the case that interests us, the

simplest series that we will use is reduced, in the unitary domain, to a Fourier series of sines in both coordinate axes. The

characteristic that the supports are internal and partial (instead of complete) in the membrane, gives the work one of its

conditions of singularity. To the authors’ knowledge, the analysis of the aforementioned case is not reported elsewhere in

the literature. The proposed methodology guarantees that the frequencies found are only those related to the problem,

eliminating spurious frequencies. It is demonstrated how, depending on the characteristic algorithm, it is possible to

identify in an unmistakable way, spurious parameters that result when adopting this approach. It is proved that, in general,

the frequency parameter of polygonal membranes does not match the square root of the parameter for frequency simple

supported plates of the same shape. Evidently, this is due to the addition of intermediate supports. As has been known for

the last century, without the presence of the analogy of the quadratic ratio between corresponding parameters is verified.

r 2007 Published by Elsevier Ltd.
1. Introduction

Even though the amount of work dedicated to the study of membranes is not as large as in the case of plates,
there have been many attempts to solve for the response of a homogeneous membrane of simply geometry.
The Helmholtz equation is frequently encountered in various fields of engineering and physics [1–3]. It is used
for analysing acoustics, wave diffraction problems, vibration of membranes, electromagnetic field, etc.
Recently, thin membranes are increasingly being used for space structures applications, due to the growing
requirement for reflecting surfaces in solar arrays, space radars and reflector antennas. These ultra-lightweight
ee front matter r 2007 Published by Elsevier Ltd.
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structures have become very attractive because they can meet structural requirements for space applications at
a low cost. Therefore, the development and validation of analysis methods for predicting their vibration
behaviour have been at the forefront of recent research activities. So, the development of a new analysis
technique for the vibration of membrane structures is described here.

In the present work, the search for eigenvalues in problems ruled by Helmholtz’s equation in 2D, is analysed
by means of a direct method, whose minimizers are extended trigonometric series of uniform convergence, and
which constitute a methodology known as the whole element method (WEM). See for example [4–6]. The
problem of rectangular vibrating membranes is presented in Section 2, but due to the inclusion of partial linear
intermediate supports of arbitrary directive, a contribution to the classic functional is added. The proposition,
to extend the functional that we use in the variational method, is an adaptation of a similar method regarding
plate vibrations [7], where said extension is justified theoretically, through the null virtual work of the
unknown linear reaction of the support, when the deflection (modal shape) is null. The analysis of rectangular
membranes with internal supports has been a problem of interest to engineers for over the last decades. Most
theoretical analyses were limited to rectangular membranes, with continuous internal line supports in one
direction. For example, the work of Vega et al. [8] describes the deduction of natural frequencies in rectangular
membranes with slanted internal supports, but with the fundamental characteristic of being whole supports,
i.e., the supports’ edges are on the perimeter of the membrane. All of the supports cross the geometric centre of
the membrane, which leads to the fact that their frequencies belong to those of trapezoidal membranes.

The authors would like to point out that one of the singular novelties of this study is that the proposed
internal supports are partial, not necessarily passing through the centroid of the membrane and, besides, their
geometry is arbitrary. In fact, the case quoted in Ref. [8] could be considered a particular case within our
methodology. A literature research performed by the authors revealed that no solution is available for the case
of partial supports. In a later work [9–12], under the assumption that oblique lines ‘‘y vibrate harmonically

y’’, a technique is used that has a few points in common with our proposition, but that stays outside the
energetic context that our methodology adjudicates here, with a strict justification.

In Section 2, the matrix resolution to find natural frequencies is presented, and it is also indicated how to
leave aside the spurious eigenvalues, which do not fit the actual problem. Of course, this technique, based on
more-or-less known theorems of matrix calculus, may be applied to any problem, not necessarily variational,
where the problem leads to an algorithm formally analogous to the one presented here. Included in an
appendix is a demonstration of why in this case, that of membranes with partial intermediate supports, the
widely known analogy that natural frequency parameters of polygonal supported plates are the square of
those of equally shaped membranes, does not apply [13]. As such, it would be a serious mistake to extend the
mentioned analogy to cases such as the one presented here.

A set of selected examples is examined. The numerical values of their natural frequencies and their mode
shapes are presented in Section 3. Conclusions and relevant commentaries are included in Section 4.

2. Formulations

The linear problem that we will solve, by means of a generalized solution, is the one ruled by

r2wþ O�2w ¼ 0

wGj
¼ 0

ðj ¼ 1; 2; . . .Þ (1)

in the domain of Fig. 1, where r2(�) is the Laplacian operator in orthogonal cartesian coordinates (XY),
O*2
¼ o2r/T is the frequency parameter adopted, where r and T are, respectively, the uniform density and

stress of the membrane, and o is the natural frequency, since normal ways of vibration are accepted. Also, Gk

(k ¼ l,2,y) are the linear regions where the mode shape w ¼ ŵðX ;Y Þ; ð0pXpa; 0pYpbÞ, is annulled.
Before writing the energetic functional, the problem is non-dimensionalized with respect to edge a.

Therefore, if x ¼ X/a and y ¼ l Y/a, where l ¼ a/b, the vibration frequency o is expressed in terms of the
following non-dimensionalized frequency parameter:

O2 ¼ O�2a2 ¼
r
T
o2a2. (2)
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Fig. 1. Simple supported rectangular membrane with partial intermediate linear supports.

Fig. 2. Local parameters.

C.P. Filipich, E.A. Bambill / Journal of Sound and Vibration 310 (2008) 21–37 23
Then, for w ¼ ŵðx; yÞ, Eq. (1) turns into

w00 þ l2 ¯̄wþ O2 w ¼ 0 ð0px; yp1Þ;

wGj
¼ 0 ðj ¼ 1; 2; . . .Þ

(3)

and the corresponding functional may be written as

U ¼

ZZ
A

ðw0
2
þ l2w̄2Þ � O2w2

h i
dA, (4)

where dA is the element of area, the prime (�0) denotes the derivative with respect to x, and (�̄) denotes the
derivative with respect to y.

The functional equation (4) must be extended with those restrictions that the used sequence does not satisfy
identically. In general, if the adopted deflection w is not identically annulled over support Gj, the following is
proposed. In Fig. 2, consider Gk as an internal support of the membrane, and let the function mk ¼ mk(s) is its
reaction, where s denotes the arc of the curve. We do not lose generality, if we impose 0pspl. Then, the Gk

curve is defined as

ðGkÞ
xk ¼ xkðsÞ;

yk ¼ ykðsÞ:

(
(5)

We know that the following should also be fulfilled:

wðxkðsÞ; ykðsÞÞ ¼ wkðsÞ ¼ 0 (6)

and the virtual work

ðTVÞk ¼

Z 1

0

mkðsÞwkðsÞds ¼ 0 (7)

must be void.
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Each and every one of the n regions where w is not identically annulled will generate an integral like Eq. (7),
and which will extend the functional equation (4). Then, the extended functional to be used is

Ua ¼ U �
Xn

k¼0

ðTVÞk ¼ 0. (8)

This way of showing the restrictions (restricted edges), leads to a definition of Lagrange multipliers for
holonomic continuous problems. We know from the WEM that in a bidimensional space, as in our case, two
of the infinite possible series of uniform convergence in a unitary square domain, are

w ¼ wðx; yÞ ¼
X
i¼1

AiðyÞ sinðipxÞ þ xA0ðyÞ þ aðyÞ (9)

and

w ¼ wðx; yÞ ¼
X
i¼1

BiðyÞ cosðipxÞ þ B0ðyÞ. (10)

If at the same time, we develop the coefficients of these extended trigonometric series in an analogous way, we
find

wðx; yÞ ¼
X
i¼1

X
j¼1

Aij sinðipxÞ sinðjpyÞ

þ y
X
i¼1

Ai0 sinðipxÞ þ b0

 !

þ x
X
j¼1

A0j sinðjpyÞ þ a0

 !

þ
X
i¼1

ai0 sinðipxÞ

þ
X
j¼1

a0j sinðjpyÞ þ A00xyþ a ð11Þ

and

wðx; yÞ ¼
X
i¼1

X
j¼1

Bij cosðipxÞ cosðjpyÞ

þ
X
i¼1

Bi0 cos ipxð Þ þ
X
j¼1

B0j cosðjpyÞ þ B00. ð12Þ

Finding the coefficients of Eqs. (11) and (12) in the unitary domain (which is elementary), these series allow
any continuous function, to be developed with uniform convergence. Without trying to overextend ourselves
over the whole element method, let us just say, that series Eq. (11) preserves its uniform convergence if we take
a derivative of it once. On the other hand, the second derivatives lose their uniform convergence, and are only
convergent in L2. With respect to Eq. (12), already its first derivatives are convergent in L2.

In the current work, we impose that w(x,y) is given by Eq. (11). Fortunately, as the modal shape w(x, y) is
annulled over the boundary G1, G2, G3 and G4 (essential or geometric conditions), the series becomes

w ¼ wðx; yÞ ¼
X
i¼1

X
j¼1

Aij sinðipxÞ sinðjpyÞ: (13)

It is well known that in variational methods of linear problems, it is enough that the extremizing
sequences involved in the functional be convergent in L2, fulfilling only the essential or geometric boundary
conditions. As Eq. (11) will be used to derive modal shapes, such will not be the case for membranes, since the
first derivatives have uniform convergence, but, for example, they will be of convergence in L2 for the problem
of plates.
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In accordance with Eq. (9) or Eq. (10), the reactions mk(s) of each inner partial support could be developed
with uniform convergence as

mkðsÞ ¼
X
pk¼1

gðkÞp sinðpkpsÞ þ gðkÞ0 sþmðkÞ (14a)

or

mkðsÞ ¼
X
pk¼0

gðkÞp cosðpkpsÞ: (14b)

However, it is easy to demonstrate that it would be enough to impose

mkðsÞ ¼
X
pk¼1

gðkÞp sinðpkpsÞ (15)

with convergence in L2 to obtain equal (TV)k given by Eq. (7).
Then, the extended functional will be

Ua ¼

ZZ XM
i¼1

XN

j¼1

ipAijcisj

 !2

þ l2
XM
i¼1

XN

j¼1

jpAijsicj

 !2
2
4

� O2
XM
i¼1

XN

j¼1

Aijsisj

 !2
3
5dA�

Xn

k¼1

XR

pk¼0

XM
i¼1

XN

j¼1

gðkÞp Aij

�

Z 1

0

cosðpkpsÞ sinðipxðsÞÞ sinðjpyðsÞÞds. ð16Þ

From the stationary condition for Ua, that is

dUa ¼
XM
i¼1

XN

j¼1

qUa

qAij

dAij þ
Xn

k¼1

XR

pk¼0

qUa

q gðkÞP

dgðkÞp ¼ 0 (17)

and if we assume that the variations of the coefficient are independent, we will find out that the following
homogeneous system must be fulfilled, which allows us to write

Dv ¼ 0, (18)

where D is a square matrix of order (MN+n(R+l) and v is the vector of unknows of the same order. M, N and
R are the practical limits of the sums of subindexes i, j and pk, respectively, that is,

vT ¼ ½A11A12 � � �A1NA21A22 � � �A2N � � �AM1AM2 � � �AMN

jgð1Þ0 � � � g
ð1Þ
1 � � � g

ð1Þ
R1g
ð2Þ
0 gð2Þ1 � � � g

ð2Þ
R2 � � � g

ðnÞ
0 � � � g

ðnÞ
1 � � � g

ðnÞ
Rn�. ð19Þ

We will present D as

D ¼
D K

L Q

" #
. (20)

For our particular problem, D is a diagonal square matrix of elements DIJ, where I, J ¼ 1,2,y(MN), Q is a
null square matrix of elements QIJ, where I ; J ¼ 1; 2; . . . ðnþ

Pn
k¼1RkÞ, K is a rectangular matrix of elements

KI,J, where I ¼ 1,2,y(MN), J ¼ 1,2,y(nþ
Pn

k¼1Rk), and L is the matrix L ¼ KT, with elements KJI. Matrix
D is diagonal, because the base that we combined in Eq. (13) is orthogonal, that is

DIJ ¼
0; IaJ;
1
4
p2ði2 þ l2j2Þ � O2
� �

; I ¼ J;

(
(21)
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where

I ¼ Nði � 1Þ þ j;
i ¼ 1; 2; . . . ;M ;

j ¼ 1; 2; . . . ;N;

QIJ ¼ 0 I ; J ¼ 1; 2; . . . ; nþ
Xn

k¼1

Rk

 !
. (22)

Partitioning K,

K ¼ Kð1ÞjKð2Þj � � � jKðnÞ
� �

(23)

we have that

K
ðkÞ
IJk
¼

Z 1

0

cosðpkpsÞ sinðipxðsÞÞ sinðjpyðsÞÞds (24)

with k ¼ l,2,y,n, I ¼ N(i�l)+j and Jk ¼ l+pk.
For the similar problem of plate vibration, the matrixes K and Q are the same. On the other hand,

DII ¼
1
4 p4ði2 þ l2j2Þ2 � ðrho2=DÞa4O2
� �

is modified. The other elements of the matrix DIJ are null, h is the
thickness of the plate, and D is the flexural rigidity of the plate.

The characteristic equation that will allow us to find the frequencies of the rectangular membrane with
partial intermediate supports, comes from annulling the determinant of D, that is

detD ¼ 0. (25)

Owing to a well-known result of matrix algebra [14], this equals

detD ¼ detD � detðQ� LD�1KÞ ¼ 0 (26)

and in our case it comes down to

det D � detðKTD�1KÞ ¼ 0. (27)

The frequencies that result from detD ¼ 0, must obviously be discarded, since they belong to the
rectangular membrane without intermediate supports, and it would generate spurious eigenvalues. For our
case then, the following determinant of order ðnþ

Pn
k¼1RkÞ must be imposed:

detðKTD�1KÞ ¼ 0. (28)

This is theoretically correct, but due to the practical reasons that we include in the final comments, we
preferred to use another characteristic equation, which generates a determinant of order ½M �Nþ

ðnþ
Pn

k¼1RkÞ�, which nevertheless leads with greater accuracy to the frequencies that we seek.
Effectively, one sees that the matrix D can be expressed as

D ¼ D1 � O2D2, (29)

that is

DIJ ¼ D1
IJ � O2D2

IJ , (30)

where D1
IJ ¼ 1=4½p2ði2 þ l2j2Þ�, D2

IJ ¼ 1=4dIJ , and dIJ are the second-order deltas of Kronecker.
Therefore, D can be written as

D ¼ D1 � O2D2 (31)

with

D1 ¼
D1 K

KT 0

" #
; D2 ¼

D2 0

0 0

" #
. (32)
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Now, we find the roots as

detD ¼ detðD1 � O2D2Þ ¼ 0. (33)

By the particular feature of Eq. (33), no spurious frequencies are found. This characteristic equation
guarantees by itself, that the eigenvalues found are only those belonging to the system. Concluding this item,
we indicate a matrix result that can be of interest due to its practical use. In the case that the matrix Q ¼ 0 (see
Eq. (20)), as is the case presented here; it must be verified that MN4ðnþ

Pn
k¼1RkÞ in order to effectively

determine the eigenvalues of the problem. The other two possible alternatives do not submit any eigenvalue.
The case where MNo nþ

Pn
k¼1Rk

� �
, verifies that detD ¼ 0. The particular case where MN ¼ ðnþ

Pn
k¼1RkÞ,

since K and L are square matrixes, leads to detD ¼ detK � detL.
3. Numeric results

In order to illustrate the accuracy and utility of our proposition, we present a series of examples in which we
determine the natural frequencies of rectangular membranes with partial intermediate supports of arbitrary
geometry. Table 1 shows the first natural oscillation frequencies belonging to square membranes simple
supported (SS) on its four edges, with partial linear intermediate supports. The algorithm results are
contrasted with ones from the finite element method (FEM). Fig. 3 shows the different models, which
are examined. The numeric results for a SS square membrane with curved partial intermediate supports, are
shown in Table 2, In this case, the inner support is an arc of circumference of radius r ¼ 0.25 and centred on
(0.50, 0.50), as it is shown in Fig. 4. Table 3 shows the results belonging to rectangular membranes with
multiple intermediate supports (Fig. 5). The frequency parameters are shown with those obtained with the
finite element method.

To the authors’ knowledge, no values exist that have been obtained with other methodologies. It is
important to emphasize that the accuracy of the results depends on the number of terms fixed for the series
that reproduces the modal shapes, since our proposition always leads to the exact solution. From this
perspective, this implies that the eigenvalues are found to an arbitrary degree of precision, which matches the
particular problem.

To ensure the correctness of the present results and to expand the validity of our proposal, comparisons are
made with results from one paper available in the open literature [8]. The values obtained are also compared
with FEM. Table 4 shows the analysis of natural frequencies, belonging to rectangular membranes with whole
linear intermediate supports, i.e., those whose ends extend to the very boundary of the membrane. The
different models of rectangular membranes corresponding to this case are presented in Fig. 6. Frequency
parameters of the first ten eigenmodes have been presented for all the distinct cases. The modal morphology is
Table 1

Natural frequencies of a square membrane with a partial intermediate support obtained by the proposed method whole element method

and finite element method

Natural

frequencies

Model (a) Model (b) Model (c) Model (d)

WEM FEM WEM FEM WEM FEM WEM FEM

O1 5.0214 4.9908 5.8759 5.7981 7.0248 7.0348 5.6620 5.6537

O2 7.1705 7.1471 7.0248 7.0297 7.0726 7.0348 7.9649 7.9563

O3 8.1551 8.0953 8.1539 8.1371 9.9346 9.9488 9.3642 9.3598

O4 9.5294 9.5009 9.9346 9.9409 10.0021 9.9488 9.4096 9.3700

O5 10.1806 10.1474 10.4010 10.3007 11.3271 11.3437 10.4984 10.4893

O6 10.8500 10.7844 11.1707 11.0687 11.4042 11.3437 11.6721 11.6565

O7 12.0736 11.9415 11.3271 11.3350 12.9530 12.9721 12.5796 12.5227

O8 12.2980 12.1412 12.2411 12.0656 13.0409 12.9721 12.8829 12.8496

O9 12.9530 12.9562 12.9530 12.9616 14.0496 14.0707 13.2018 13.1855

O10 13.2292 13.2088 13.4977 13.4621 14.1451 14.0707 14.1460 14.1316
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Table 2

Natural frequencies of a square membrane with an intermediate circumferential support obtained by the proposed method whole element

method and finite element method

Natural

frequencies

Model (a) Model (b) Model (c) Model (d)

WEM FEM WEM FEM WEM FEM WEM FEM

O1 5.3597 5.3151 6.1015 6.0211 7.7940 7.5381 9.6061 9.6196

O2 7.5042 7.4452 8.5102 8.4139 9.8500 9.8306 10.1668 10.1757

O3 8.5622 8.4953 9.8789 9.8670 10.3452 10.2561 10.5928 10.5983

O4 9.9199 9.9206 10.3182 10.2443 10.4168 10.3417 12.7633 12.7772

O5 10.4364 10.3785 10.5269 10.4902 10.6040 10.5524 13.3868 13.4008

O6 10.6524 10.6049 11.1342 11.0464 12.3491 12.0860 14.5612 14.5725

O7 11.8273 11.7433 12.7889 12.5875 13.2337 13.1357 14.8491 14.8521

O8 12.5478 12.3974 13.0376 12.9461 13.3663 13.1648 15.3091 15.3268

O9 13.0984 13.0884 13.3005 13.2943 13.5266 13.5031 17.0136 17.0164

O10 13.3204 13.3152 13.5262 13.5017 14.6563 14.5605 18.3144 18.3200

Fig. 3. Square membrane with a partial intermediate support: (a) M/R ¼ 4, P0 ¼ (0.25, 0.25), P1 ¼ (0.25, 0.50), (b) M/R ¼ 4, P0 ¼ (0.25,

0.25), P1 ¼ (50,0.50), (c) M/Rffil, P0 ¼ (0,0), P1 ¼ (1,1), (d) M/Rffil, P0 ¼ (0,l), and P1 ¼ (l, 0.40).

C.P. Filipich, E.A. Bambill / Journal of Sound and Vibration 310 (2008) 21–3728
plotted for the first six eigenmodes, except for the rectangular membranes of Table 4, as their frequencies
belong to those of trapezoidal membranes.

4. Conclusions

The tool that we have presented here, is yet another contribution to the study of Helmholtz’s equation in
rectangular domains with partial intermediate supports. A literature research performed by the authors
revealed that no solution is available for this case. Even more, some finite elements codes do not include the
natural frequencies for this kind of problems in a direct way. In this current work, we have used FlexPDE to
determine the natural vibrations and their modal shapes Figs. 7–16.

Another original aspect that the authors would like to highlight is that it is often found in other works that
spurious values have arisen, in the determination of natural frequencies of membranes. In our work, the
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Fig. 4. Square membrane with an intermediate circumferential arc support. Centre C0 ¼ (0.50, 0.50), r ¼ 0.25: (a) M/R ¼ 2.70, a ¼ P/2,

(b) M/R ¼ 2, a ¼ P, (c) M/R ¼ 1.55, a ¼ 3p/2, and (d) M/R ¼ 1.33, a ¼ 2p

Table 3

Natural frequencies of a rectangular membrane with multiple intermediate supports obtained by the proposed method whole element

method and finite element method. l ¼ 1.25

Natural frequencies Model (a) Model (b)

WEM FEM WEM FEM

O1 6.2865 6.24285 6.9109 6.87680

O2 8.9571 8.90848 8.8684 8.83505

O3 10.2428 10.16590 9.9681 9.93611

O4 11.8417 11.80649 11.6648 11.58715

O5 12.8104 12.75635 12.0644 11.84571

O6 13.5769 13.53110 13.1561 13.12386

O7 14.7017 14.54286 13.4755 13.42944

O8 15.5032 15.18556 14.5274 14.45813

O9 15.7028 15.58244 15.5919 15.44146

O10 16.2448 16.22871 16.0256 15.92882

Fig. 5. Rectangular membranes with multiple partial intermediate supports. l ¼ a/b ¼ 1.25: (a) M/Rffi2, x0 ¼ 0.20, y0 ¼ 0.25, x ¼ 0.60,

y1 ¼ 0.75 and (b) M/R ¼ 2, x0 ¼ 0.20, y0 ¼ 0.25, x1 ¼ 0.50, y1 ¼ 0.50.

C.P. Filipich, E.A. Bambill / Journal of Sound and Vibration 310 (2008) 21–37 29
methodology provides a thorough study of the characteristic equation of the problem that allows for the
elimination of the spurious values beforehand, therefore guaranteeing that only the solution to the problem is
found. This aspect is mentioned in Section 2.
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Table 4

Natural frequencies of a rectangular membrane with multiple intermediate supports obtained by the propose method WEM, FEM and the

method described in Ref. [8] l ¼ a/b ¼ 3

Natural

frequencies

Model (a) Model (b) Model (c) Model (d) Model (e)

WEM FEM [8] WEM FEM [8] WEM FEM [8] WEM FEM [8] WEM FEM [8]

O1 3.7757 3.7757 3.7760 6.3698 6.3702 6.3714 4.6859 4.6739 4.9301 5.4099 5.3943 5.6510 4.0547 4.0455 4.2604

O2 5.2360 5.2361 – 6.6230 6.6232 – 5.9761 5.9680 – 6.3959 6.3896 – 5.5770 5.5703 –

O3 6.6230 6.6235 – 7.0248 7.0253 – 7.1533 7.1474 – 7.2951 7.2734 – 6.9390 6.9244 –

O4 7.0248 7.0258 – 7.5514 7.5521 – 8.1605 8.1432 – 8.1279 8.1050 – 7.0290 7.0286 –

O5 7.5514 7.5526 – 8.1789 8.1800 – 8.3398 8.3217 – 8.9328 8.9058 – 8.3721 8.3561 –

O6 8.8858 8.8890 – 8.8858 8.8878 – 9.3834 9.3683 – 9.7094 9.6849 – 8.5572 8.5391 –

O7 8.9472 8.9500 – 9.6578 10.9794 – 9.6915 9.6796 – 9.8976 9.8749 – 9.6903 9.6735 –

O8 9.6547 9.6581 – 10.4764 11.5768 – 10.4916 10.4728 – 10.4905 10.4599 – 9.9202 9.9105 –

O9 10.3137 10.3177 – 11.3343 11.6379 – 10.9794 10.9595 – 11.0682 11.0430 – 10.1579 10.1433 –

O10 10.4720 10.4770 – 12.2236 12.2221 – 11.5768 11.5597 – 11.2627 11.2386 – 11.0600 11.0393 –

Fig. 6. Rectangular membranes with oblique supports. X ¼ a/b ¼ 3: (a) M/R ¼ l, x0 ¼ 0.50, y0 ¼ 0, y1 ¼ l, (b) M/R ¼ l, x0 ¼ 0,

y0 ¼ 0.50, x1 ¼ l, (c) M/R ¼ l, x0 ¼ 0, y0 ¼ 0, x1 ¼ l, y1 ¼ l, (d) M/R ¼ l, x0 ¼ 0, y0 ¼ 0.25, x1 ¼ l, y1 ¼ 0.75, and (e) M/R ¼ l, x0 ¼ 0.25,

y0 ¼ 0, x1 ¼ 0.75,y1 ¼ 1.00.
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The utilization of a full set of expanded trigonometric functions of uniform convergence, guarantees
beforehand the convergence into exact values. Besides, the fact that the restriction of the partial intermediate
supports is considered through the addition of Lagrange multipliers is theoretically exact. The use of
trigonometric functions and Lagrange multipliers allow one to obtain values as accurate as necessary, as
the convergence of the methodology used here depends on the number of terms adopted in the series. It should
be pointed out that in this case, the number of terms has been relatively low, with very little demand of
computational time.

It is convenient to briefly indicate the observations derived from the study of convergence. In order to
obtain the eigenvalues, it is natural to adopt two of the three parameters that define the limit of the series.
Indeed, the study starts by proposing the number M and N, which represent the number of half-waves of a
vibration mode in the x and y directions, respectively. Then, a suitable R is adopted to fulfil the condition of
null virtual work over each support. It seems logical to assume beforehand, that in order to achieve a better
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Fig. 7. First six mode shapes of the square membrane Model (a) Table 1 by the proposed method: (a) 1st mode, (b) 2nd mode, (c) 3rd

mode, (d) 4th mode, (e) 5th mode, and (f) 6th mode.

Fig. 8. First six mode shapes of the square membrane Model (b) Table 1 by the proposed method: (a) 1st mode, (b) 2nd mode, (c) 3rd

mode, (d) 4th mode, (e) 5th mode, and (f) 6th mode.

Fig. 9. First six mode shapes of the square membrane Model (c) Table 1 by the proposed method: (a) 1st mode, (b) 2nd mode, (c) 3rd

mode, (d) 4th mode, (e) 5th mode, and (f) 6th mode.
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Fig. 10. First six mode shapes of the square membrane Model (d) Table 1 by the proposed method: (a) 1st mode, (b) 2nd mode, (c) 3rd

mode, (d) 4th mode, (e) 5th mode, and (f) 6th mode.

Fig. 11. First six mode shapes of the square membrane Model (a) Table 2 by the proposed method: (a) 1st mode, (b) 2nd mode, (c) 3rd

mode, (d) 4th mode, (e) 5th mode, and (f) 6th mode.

Fig. 12. First six mode shapes of the square membrane Model (b) Table 2 by the proposed method: (a) 1st mode, (b) 2nd mode, (c) 3rd

mode, (d) 4th mode, (e) 5th mode, and (f) 6th mode.
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Fig. 13. First six mode shapes of the square membrane Model (c) Table 2 by the proposed method: (a) 1st mode, (b) 2nd mode, (c) 3rd

mode, (d) 4th mode, (e) 5th mode, and (f) 6th mode.

Fig. 14. First six mode shapes of the square membrane Model (d) Table 2 by the proposed method: (a) 1st mode, (b) 2nd mode, (c) 3rd

mode, (d) 4th mode, (e) 5th mode, and (f) 6th mode.
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adaptation of the mode shape to the internally restricted geometry of the membrane, a large number (M) of
semiwaves should be proposed. Furthermore, in previous work done by this investigation group that has been
the norm, resulting in a noticeable demand of computer time. However, from the tests that were done when
the algorithm was calibrated, it is concluded that in order to obtain an accurate enough algorithm, there is an
M/R ratio for each analysed geometry which offers results that can be considered to have an acceptable
accuracy, even for low numbers (M and R) of semiwaves, which were not higher than two digits. Such
evidence was manifested at the time when the present algorithm, reproduced the known frequencies of thin
plates with the same complexities [7]. With very low values of M and R, that kept a certain ratio, acceptable
results were obtained. With an approximately constant M/R ratio, no matter how small the numbers of
semiwaves were adopted, eigenvalues with adequate accuracy were found. As it is expected, the accuracy
improves as M and R increase. For the sake of brevity, thin plates results are not included.

As an original theorem, the demonstration that the known analogy between membranes and polygonal
plates of equal geometry stops working when the domain has partial intermediate supports, is also included in
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Fig. 15. First six mode shapes of the rectangular membrane Model (a) Table 3 by the proposed method: (a) 1st mode, (b) 2nd mode,

(c) 3rd mode, (d) 4th mode, (e) 5th mode, and (f) 6th mode.

Fig. 16. First six mode shapes of the rectangular membrane Model (b) Table 3 by the proposed method: (a) 1st mode, (b) 2nd mode,

(c) 3rd mode, (d) 4th mode, (e) 5th mode, and (f) 6th mode.
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Appendix A. On the other hand, the method of imposing both null displacements and virtual work in several
points of the intermediate supports was also used. The difference found between them, ‘‘continuous’’ and
‘‘discrete’’ ones, was irrelevant.

Appendix A

Loss of the analogy between membranes and SS plates when intermediate supports is involved.
We will present a simple demonstration of the above. The equation for free vibrations for thin plates

(Germain–Lagrange) is

r2r2v� l2v ¼ 0 (A.1)
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in which

r2ð:Þ ¼ ð:Þxx þ ð:Þyy,

ð:Þx ¼
qð:Þ
qx

; ð:Þy ¼
qð:Þ
qy

,

l2 ¼
rh

D
o2; v ¼ vðx; yÞ, (A.2)

where h is the thickness and D the flexural rigidity of the plate. If the plate is SS on the boundary (G), it is
seen that

v
ðaÞ
ðGÞ ¼ 0, (A.3a)

M
ðbÞ
nðGÞ ¼ 0, (A.3b)

where Mn indicates the bending moment in the plane (zn), being Mx, My and Mxy the bending moments and
the twisting moment, respectively. Owing to the tensorial nature of the stress, Mn fulfills the following:

Mn ¼Mxn2
1 þ 2Mxyn1n2 þMyn2

2; (A.4)

where ni (i ¼ 1,2) are the cosine directors.
From the theory of plates, we know that

Mx ¼ �Dðvxx þ nvyyÞ;

My ¼ �Dðvyy þ nvxxÞ;

Mxy ¼ �Dð1� nÞvxy;

(A.5)

where v is the Poisson’s coefficient.
The directional derivatives with regard to orthogonal directions ŝ and n̂ are (Fig. A1)

ð:Þs 	 ð:Þt ¼ gradð:Þt̂, (A.6a)

ð:Þn ¼ gradð:Þn̂ (A.6b)

being

gradð:Þ ¼ ð:Þxî þ ð:Þyĵ, (A.7)

t̂ ¼ �n2 î þ n1 ĵ, (A.8a)

n̂ ¼ n1 î þ n2 ĵ. (A.8b)
Fig. A1. Directional derivatives with regard to orthogonal directions s̄ and n̄.
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We calculate the second directional derivatives; with a ¼ a(s) we find that

ð:Þss ¼ ð:Þxxn2
2 � 2ð:Þxyn1n2 þ ð:Þyyn2

1 � asð:Þn, (A.9a)

ð:Þnn ¼ ð:Þxxn2
1 � 2ð:Þxyn1n2 þ ð:Þyyn2

2: (A.9b)

We notice from Eqs. (A.4), (A.5) and (A.9) that

Mn ¼ �D½vnn þ nðvss þ asvnÞ�. (A.10)

We also need the Laplacian in coordinates n and s; so, we operate with the sum of Eqs. (A.9a) and (A.9b), and
we find

r2ð:Þ ¼ ð:Þxx þ ð:Þyy ¼ ð:Þss þ asð:Þn þ ð:Þnn. (A.11)

Now, moving over to the perimeter where t̂ and n̄ are the unit tangent and normal vectors, respectively,
from condition equation (A.3a)

vðGÞ ¼ 0) vsðGÞ ¼ vssðGÞ ¼ 0. (A.12)

Therefore, condition equation (A.3b) can be written, considering Eq. (A.12), as

MnðGÞ ¼ 0) ðvnn þ nasvnÞðGÞ ¼ 0, (A.13)

since �D6¼0. Also, from Eqs. (A.11) and (A.12)

ðr2vÞðGÞ ¼ ðvnn þ asvnÞðGÞ ¼
n� 1

n

� 	
ðvnnÞðGÞ. (A.14)

Now, let us remember Helmholtz’s equation for the vibrating membrane

r2wþ O2w ¼ 0 (A.15)

added to the boundary condition

wðGÞ ¼ 0. (A.16)

Seeking an analogy between both problems, we rewrite Eq. (A.1) adding and subtracting ðl2r2vÞ, that is

r2r2v� l2vþ ðl2r2v� l2r2vÞ ¼ 0 (A.17)

or

r2ðr2v� lvÞ þ lðr2v� lvÞ ¼ 0. (A.18)

If we denote

w� ¼ r2v� lv, (A.19)

Eq. (A. 19) for vibrating plates can be written as

r2w� þ lw� ¼ 0. (A.20)

Then, comparing Eq. (A.15) with Eq. (A.20), we see that both equations will be the same if l ¼ O2, as long as

w�ðGÞ 	 ðr
2v� lvÞðGÞ ¼ 0. (A.21)

Now, let us analyze under which conditions Eq. (A.21) will be verified. Owing to Eq. (A.3) v(G) ¼ 0; we need
to find when (r2v)(G) ¼ 0. We deduct from Eq. (A.14) that it must occur with (v�1)/v 6¼0, that is

ðvnnÞðGÞ ¼ 0. (A.22)

So, considering that Eq. (A.22) is satisfied, the boundary condition Eq. (A.3b) for SS plates, due to Eq. (A.14),
would imply that

ðasvnÞðGÞ ¼ 0. (A.23)
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The normal derivative of SS plate is generally not null; therefore, in order to fulfil the analogy

ðasÞðGÞ ¼ 0. (A.24)

Therefore, and this is a result known for the last century, it is enough that the plate’s shape be polygonal (like
the membrane’s), that is, a domain formed by straight SS edges, with which Eq. (A.24) is evidently fulfilled on
each length. In this way, the boundary conditions of the polygonal SS plate become

ðvÞðGÞ ¼ 0;

ðvnnÞðGÞ ¼ 0;
(A.25)

so ðr2vÞðGÞ ¼ 0 is verified, and therefore, also Eq. (A.21). Then, solving the l frequencies of these plates, we
also find that

O ¼
ffiffiffi
l
p

, (A.26)

which are the frequency parameters of the membranes of the same geometry.
When the membrane has partial intermediate supports (Fig. A1), besides Eq. (A.16) condition, it must be

satisfied

ðwÞðGkÞ ¼ 0; k ¼ 1; 2; . . . ; n, (A.27)

where n is the number of inner supports.
Now, in general, a plate with the same shape and same supports will not fulfil Eq. (A.21), despite the inner

supports are polygonal, because the condition (Mn)(Gk) ¼ 0 will not be true. That is, even accepting (as)(Gk) ¼ 0
(straight inner supports) (vnn)(Gk) 6¼0. This shows that the known and useful analogy is lost.

Directional derivatives with regard to orthogonal directions s̄ and n̄ are shown in Fig. Al.
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